Phase I Archaeological Investigation at Oak Tree Lane Town of Haverstraw, Rockland County, New York

February 2020

Prepared for: Oak Tree Apartments, LLC, New City, New York

Alfred G. Cammisa, M.A. with Alexander Padilla (CAD)

MANAGEMENT SUMMARY

PR#: Not known

Involved agencies:
Town of Haverstraw

Phase:

Phase IA & IB

Location:

Town of Haverstraw Rockland County

Survey Area:

Length: up to about 850 feet (259 meters) north-south

Width: up to about 700 feet (213) east-west Acres Surveyed: about 13.5 acres (5.4 hectares)

USGS: Thiells, NY

Survey overview:

ST no. & interval: 191 ST's at 50 ft (15m) intervals.

Size of freshly plowed area: na Surface survey transect interval: Na

Results:

No prehistoric or historic sites, disturbed soils

Structures:

No. Of buildings/structures/cemeteries in project area: numerous cottages & multi-apt. buildings No. Of buildings/structures/cemeteries adjacent to project area: store and numerous residencies No. Of previously determined NR listed or eligible buildings/structures/cemeteries/districts: none No. Of identified eligible buildings/structures/cemeteries/districts: none

Authors:

Alfred G. Cammisa, M.A. with Alexander Padilla, B.A. (CAD)

Date of Report:

Report completed February, 2020

TABLE OF CONTENTS

Environment Prehistoric Pot Historic Potent Field Methods Field Results Conclusions ar Bibliography	entialiald Recommendationsgures and Photographs	
	LIST OF FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Thiells, NY USGS Location of the ST's on the project area 1839 Burr map 1854 map of Rockland County 1859 Beers atlas of Rockland County 1867 Beers atlas 1910 USGS County Soil Survey	
	LIST OF PHOTOGRAPHS	
Photo 1 Photo 2 Photo 3 Photo 4	Entrance way to Oak Tree Lane housing complex Toward macadam parking area Toward wooded fringe Toward concrete & stone foundation	

From filled-in in-ground pool toward storage tanks

Photo 5

INTRODUCTION

Between January 29 and February 19, 2020, TRACKER Archaeology, Inc. conducted a Phase IA documentary study and a Phase IB survey at Oak Tree Lane, Haverstraw Town, Rockland County, New York.

The purpose of the Phase IA documentary study was to determine the prehistoric and historic potential of the project area for the recovery of archaeological remains. The Phase IA was implemented by a review of the original and current environmental data, archaeological site files, other archival literature, maps, and documents.

The prehistoric and historic site file search was conducted at the New York Historic Preservation Office in Waterford, New York. Various historic web sites were queried via the internet to review any pertinent site information.

The purpose of the Phase IB survey was to recover physical evidence for the presence or absence of archaeological remains on the property before their potential destruction. This was accomplished through subsurface testing and ground surface reconnaissance.

The project area (APE) consists of the approximate 13.5 acre parcel which is planned for improvements/ redevelopment. The property is on either sides of the three Oak Tree Lanes. It is bound to the south by a paved driveway leading to a Shop Rite store, to the east by Shop-Rite and private residencies, to the north by the Village (boundary) line, and to the west by private residencies.

The study was completed by TRACKER Archaeology, Inc. of Monroe, New York. Prehistoric and historic research was conducted by Alfred G. Cammisa, M.A., principal investigator and Kim Croshier, B.A.. Field work was conducted by Alfred G. Cammisa and crew chief Alfred T. Cammisa. Report preparation by Alfred G. Cammisa with Alexander Padilla, B.A. (CAD).

The work was performed for Oak Tree Apartments, LLC, New City, New York.

ENVIRONMENT

Geology

The project area is located in the southeast portion of New York State in the east part of Rockland County. This portion of New York lies within the New Jersey Lowland Physiographic Province. The surrounding Piedmont Physiographic Province is described as an upland of moderate elevations with several lowlands areas known as the New Jersey Lowlands (Schuberth 1968: cover map, 13-14; Isachsen et al 2000: 143).

Soil and Topography Soils on the property consist:

Name	Soil Horizon Depth in(cm)	Color	Texture Inclusion	Slope %	Drain- age	Land- form
Urban land	na	na	na	na	na	At least 50% covered by structures

Name	Soil Horizon Depth in(cm)	Color	Texture Inclusion	Slope %	Drain- age	Land- form
Wethersfield	Ap 0-13in (0-33cm) B 13-22 (56)	10YR3/3 5YR4/4	GrSiLo	3-8,m 8-15, 15-25	well	glacial till

(Bonnell 1990: map #9, pgs. 42, 44-46, 89).

KEY:

Shade: Lt=Light, Dk=Dark, V=Very

Color: Br=Brown, Blk=Black, Gry=Gray, Gbr=Gray Brown, StBr=Strong Brown, Rbr=Red Brown, Ybr=

Yellow Brown

Soils: Si=Silt, SiLo=Loam, Sa=Sand, Cl=Clay

Other: Sh=shale, M=Mottle, Gr=Gravelly, Cb=cobbles, Ch=channery, Fi=Fine,/=or

Elevations are approximately 354 to 384 feet above mean sea level.

Hydrology

The project area about 1100 feet south of Minisceongo Creek which drains east into the Hudson River.

Vegetation

The predominant forest community in this area was probably the Oak Hickory. This forest is a nut producing forest with acorns and hickory nuts usually an obvious part of the leaf litter on the forest floor. The Oak Hickory Forest intermingles with virtually all other forest types. The northern extension of this forest community was also originally called the Oak-Chestnut forest, before the historic Chestnut blight (Kricher 1988:38, 57-60).

At the time of the Phase IB field survey, the study area consisted of a residential complex consisting of individual cottages as well as multi-apartment buildings.

PREHISTORIC POTENTIAL

A prehistoric site file search was conducted at the New York State Historic Preservation Office. The search included an approximate mile radius around the study area. The following sites were recorded:

-No sites reported.

Assessing the known environmental and prehistoric data, we can summarize the following:

- -The project area about 1100 feet south of Minisceongo Creek
- -The property consists of level two steeply sloping topography with well drained soils. A smaller portion is urban land (cut & fill).
- -No prehistoric sites were located in the vicinity of the study area.

In our opinion, the study area has a moderate potential for the recovery of prehistoric remains on any intact ground. The type of site encountered could possibly be a procurement and, or, processing camp from either the Archaic or Woodland Periods.

HISTORIC POTENTIAL

Contact Period (Seventeenth Century)

A the time of European contact and settlement, the study area and surrounding territory were probably occupied by the Tappans who were likely a subtribe of the Munsi speaking Lenni Lenape (Delaware) (Bolton 1975:map & chart; Ferdon 1986: 22; Bedell 1968: 27-30; Synder 1969:2).

Indian trails entered Rockland County from New Jersey. The Assanpink Trail connected Trenton, New Jersey with Suffern in Rockland County (Synder 1969:2).

Eighteenth Century

During this century most of the inhabitants were engaged in growing maize, potatoes, cereals, fruit orchards and flax. Wool was sheared and spun and hay was gathered (Bedell 1968: 54).

"The first road in Haverstraw was the continuation of the King's Highway, which connected the early settlers with their neighbors in Tappan-town. This was soon followed, as the influx of settlers from Long Island to Kakiat began, by a road from the river to the new Hempstead, a road which was later continued on to Sidman's Pass and down to Tappan and became the military road of the Revolution. Scarcely had these lines of communication been cut through, however, when the opening of Hassenclever mine and the erection of iron works along Florus Falls Creek, led to the construction of a road from the King's highway along the creek and Stony brook to the mine" (Green 1886).

Nineteenth Century

In 1830, Elisha Peck, head of "Peck & Phelps" returned from England and brought a rolling mill which was set up along the Minisceongo Creek on land purchased by Anson Phelps. A village sprang up around the rolling mill, wire, and other factories Peck and Phelps established, which was founded almost entirely by the firms employees and their families. The name for this employee village was Sansondale, in honor of the ship, the Samson, on which Peck returned from England (Green 1886:387).

"By 1837, almost all the land between the present Main Street and the neck of land known as the "Narrow Passage," was owned by George S. and Michael Allison. In that year, following the mania for real estate speculation then prevailing, these men had this tract surveyed and cut into building lots, and streets were run through and given the names, many of them still retain. The new village was called Warren" (Green 1886).

The 1839 Burr map shows the project area in the town of Haverstraw, near what appears to the the Minisceongo Creek. A road, which may be Ramapo Road, is depicted. No settlement is depicted near the project area (Figure 3).

In 1842 Phelps left the business, leaving Peck the sole owner. By now the company owned a chemical factory and screw works here. The factories were soon after leased by other companies (Green 1886: 388).

The 1854 Map of Rockland County depicts no structures on or adjacent to the project area which is just north of Rosman Road where it bends south (Figure 4).

The 1859 atlas of Rockland County depicts the same as the previous map with no structures are on or adjacent to the project area (Figure 5).

The 1867 Beers atlas shows no buildings on or adjacent to the property. Oak Tree Lane is still not depicted (Figure 6).

Twentieth Century

The 1910 USGS Beers atlas shows no structures on or adjacent to the project area (Figure 7).

An historic site file search was conducted at the New York State Historic Preservation Office. The search included an approximate mile radius around the study area. The following sites were recorded:

NYSM Site	NYSHPO Site	Distance from APE f t(m)	Site Type
	8744.000009	4750(1448)	Millennium Pipeline Historic Foundation, remains:no info.
	8744.000010	4204(1282)	Millennium Pipeline Historic Well: no info.

Assessing the known environmental and historic data, we can summarize the following:

- -The project area about 1100 feet south of Minisceongo Creek
- -The property consists of level two steeply sloping topography with well drained soils. A small portion is urban land.
- -Historic sites are in the surrounding area.
- -No historic map documented structures were noted on or adjacent to the project property.

In our opinion, the study area has a moderate potential for the recovery of historic sites on any intact ground.

FIELD METHODS

Walkover

Exposed ground surfaces were subjected to a close quarters walk- over at approximately 3 to 5 meter transects. Covered ground terrain was reconnoitered at about 15 meter intervals for any above ground features, such as berms, depressions, rock configurations, etc. that could be evidence for a prehistoric or historic site. Photographs were taken of the project area.

Shovel Testing

Shovel tests were excavated at about 15 meter intervals across level terrain in the project area. Shovel tests were paced apart. Each shovel test measured about 30 to 40 cm. in diameter and was dug into the underlying subsoil (B horizon) 10 to 20 cm. when possible. All soils were screened through 1/4 inch wire mesh and observed for artifacts. Shovel test pits were flagged in the field. All shovel tests were mapped on the project area map at this time with the assistance of a compass.

Soil stratigraphy was recorded according to texture and color. Soil color was matched against the Munsell color chart for soils. Notes were transcribed in a notebook.

FIELD RESULTS

Field testing of the project area included the excavation of 191 ST's across the the project area. No prehistoric artifacts or features were encountered. No historic artifacts or features were encountered. The apartment complex of cottages and multi-apartment buildings appeared to be a slum with broken windows, broken doors, old furniture dumped outside, condoms scattered around the grounds, a filled in in-ground pool, metal storage tanks near the pool, and dumping of tree branches in the wooded fringe areas. Deer were in the wooded areas.

Stratigraphy

Stratigraphy across the property appeared intact and included the following:

A/O horizon: 1 to 6 cm. thick of root mat, leaf litter, and/or humus.

A horizon: 23 to 32 cm. thick of 10YR4/2 dark grey, 10YR4/3 brown, 10YR3/2 very dark grey brown or 10YR3/3 dark brown, gravelly silty loam or silty loam. This layer was often mottled with subsoil and often truncated partially or entirely.

B horizon: 10 to 20 cm. dug into where possible of 10YR5/4 or 10YR5/6 yellow brown gravelly silty loam or silty loam. This layer was sometimes impeded by fill.

CONCLUSIONS AND RECOMMENDATIONS

The Phase IA had determined that based upon topographic characteristics and proximity to prehistoric sites and Indian trails, the property was assessed as having a moderate potential for encountering prehistoric sites.

Based upon topographic characteristics and proximity to historic sites, Indian trails, and map documented structures, the property was assessed as having a moderate potential for encountering historic sites.

During the course of the Phase IB archaeological field survey, 191 ST's were excavated. No prehistoric artifacts or features were encountered. No historic artifacts were recovered. The soils were impacted to some degree. No further work is recommended.

BIBLIOGRAPHY

Burr, David H.

1839 Map of the Counties of Orange and Rockland. Stone & Clark Ithaca, NY

Bonner, Stephen M.

1990 *Soil Survey of Rockland County, New York.* United States Department of Agriculture in cooperation with Cornell University Agricultural Experimental Station.

Cole, David, Rev., editor

1884 History of Rockland County, New York. J.B. Beers & Co., New York.

Green, Frank Bertangue, M.D.

1886 The History of Rockland County. A.S. Barnes & Co., New York.

Isachsen, Y.W., E. Landing, J.M. Lauber, L.V. Rickard, W.B. Rogers

2000 Geology of New York: A Simplified Account. New York State Museum.

Kricher, John C.

1988 *The Peterson Field Guide Series: Eastern Forests of North America.* Houghton Mifflin Company, Boston.

Synder, John P.

1969 *The Story of New Jersey's Civil Boundaries: 1606-1968.* Bureau of Geology-Topography, New Jersey.

Maps

- 1854 Map of Rockland County, New York. R.F. O'Conner, New York.
- 1859 Map of Rockland County, New York. R.F. O'Conner, New York.
- 1967 Illustrated Atlas of Rockland County of F.W. Beers, Walker & Jewett, NY, NY.
- 1991 Illustrated Atlas of Hudson River Valley from New Yoirk City to Troy. Watson & Co. NY, NY.
- 1955 United States Geological Survey, Haverstraw, New York quadrangle map, 7.5 minute series.
- 1910 United States Geological Survey, Haverstraw, New York quadrangle map, 15 minute series

Sauthier, Claude Joseph

1779 A Chronological Map of the Province of New York in North America, Divided into Counties, Manors, Patents, Townships, and Grants of Land. William Faden, London.

1. Barns E(Gurnee Esy Conklin "of GWerant, Figure 4 J. Conk S. March € 1854 County map N L.A. Houseman J. Fennetal M'S Evans H.G.Knapp H.G. Knapp BEASONS F.Frazer Barns - Dwood The The Plan Wevant 9 erallion Ne lette Esue. Con SM T.Al Dorman nee MON project visbrybw area J.S. Gurnee - S. Fundy Elliner h. Christe JW.Felter-MEAD CORNERS BBurns 703 J. Springsted 100 107 C. Gurnee. J.W. Felter . D. Gurne J. Weele B.Gurnee. D.B B.Lolatud .

The state of the s Dizewrence" W.BGierne W.Rose Mrs De Campa 1 Mes.WH.Rose 13 Mes J. Knapp Mrs. Gockehous Waldrow SKnapp 3 1895 J.W. Phillips J.W. Phillips J. Springsteel SKnapp Figure 5 dyear w Mes Good tchuis Till 496 illyps 1859 Beers atlas n MrsBlawelt J.C. Blaupelt R Kuan 6 E. Gurner W.R.Knapp W.Sh. I. Barns E Gurnee Esys Knapa Valentine E & Wewent Waldron B H of GWeiant Brick Ya "S.March DMunn & Benson, J. Fennel L. A. Houseman Evans. 8 I.G.Knapp SD Gardre H.G.Knapp ns - Owend 9 School Holy rgwon Ne lette Kon. T.Al Dorman J.S.Gurnee U.J. project area Misse: Pure S. Purdy 9 Elliner h. Christie J.S.Gurnee-JW.Felter-MEAD CORNERS Demorest Mes Coe BBuris 7/03 J.Springsted 100 101 C. Gurnee. J.W. Felter .

Figure 8 N
County Soil Survey

SHOVEL TESTS

STP 1	LV 1	DEPTH(CM) 0-3	TEXTURE gravel (parking lot)	COLOR	HOR	COMMENT
2	1 2 3	0-3 3-20 20-30	rootmat,leaves,humus GrSiLo road gravel GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
3	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
4	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
5	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
6	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
7	1 2 3	0-5 5-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
8	1 2 3	0-6 6-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
9	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	7.5YR4/3 7.5YR4/6	A/O A B	NCM wood NCM
10	1 2 3	0-5 5-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM plastic, wingl NCM
11	1 2 3	0-5 5-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
12	1 2 3	0-5 5-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
13	1 2 3	0-4 4-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

14	1 2 3	0-2 2-21 21-31	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
15	1 2 3	0-2 2-21 21-31	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/4	A/O A B	NCM NCM NCM
16	1 2 3	0-2 2-21 21-31	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/4	A/O A B	NCM NCM NCM
17	1 2 3	0-2 2-21 21-31	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
18	1 2 3	0-3 3-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
19	1 2 3	0-3 3-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
20	1 2 3	0-3 3-22 22-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
21	1 2 3	0-3 3-25 25-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
22	1 2 3	0-3 3-24 24-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/6	A/O A B	NCM NCM NCM
23	1 2 3	0-3 3-24 24-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/6	A/O A B	NCM NCM NCM
24	1 2 3	0-3 3-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/6	A/O A B	NCM NCM NCM
25	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
26	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/4	A/O A B	NCM NCM NCM

26	1 2 3	0-3 3-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
27	1 2 3	0-3 3-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/6	A/O A B	NCM NCM NCM
28	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR564	A/O A B	NCM NCM NCM
29	1 2 3	0-5 5-25 25-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/6	A/O A B	NCM NCM NCM
30	1 2 3	0-5 5-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/6	A/O A B	NCM NCM NCM
31	1 2 3	0-3 3-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
32	1 2 3	0-5 5-29 29-43	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
33	1 2 3	0-6 6-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
34	1 2 3	0-6 6-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM beer can NCM
35	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR564	A/O A B	NCM NCM NCM
36	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo mottle GrSiLo	10YR4/2-5/4 10YR5/4	A/O A B	NCM asphalt frags NCM
37	1 2 3	0-2 2-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR564	A/O A B	NCM bathroom tile NCM
38	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

39	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM brick frag NCM
40	1 2 3	0-4 4-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
41	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
42	1 2 3	0-5 5-25 25-38	rootmat,leaves,humus GrSiLo drainage gravel GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
43	1 2 3	0-5 5-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
44	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
45	1 2 3	0-2 2-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
46	1 2 3	0-2 2-24 24-34	rootmat,leaves,humus GrSiLo gravel GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
47	1 2 3	0-2 2-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
48	1 2 3	0-2 2-26 26-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/4	A/O A B	NCM NCM NCM
49	1 2 3	0-4 4-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
50	1 2 3	0-4 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
51	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

52	1 2 3	0-6 6-27 27-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
53	1 2 3	0-6 6-25 25-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
54	1 2 3	0-5 5-28 28-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
55	1 2 3	0-5 5-27 27-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
56	1 2	0-6 6-35	rootmat,leaves,humus Lo	10YR3/3	A/O A/fill?	NCM NCM
57	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
58	1 2 3	0-1 1-20 20-gravel/asph	rootmat,leaves,humus GrSiLo alt frags	10YR4/2	A/O A	NCM NCM
59	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
60	1 2	0-2 2-30	rootmat,leaves,humus GrSiLo mottle	10YR3/3-5/6	A/O A/grd/fi	NCM ill NCM
61	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
62	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
63	1 2 3	0-1 1-20 20-30	rootmat,leaves,humus GrSiLo gravel GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
64	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-27 27-37	GrSiLo GrSiLo	10YR4/2 10YR5/4	A B	NCM NCM

66	1 2 3	0-4 4-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM asphalt frags NCM
67	1 2 3	0-4 4-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
68	1 2 3	0-6 6-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
69	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
70	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
71	1 2 3	0-6 6-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
72	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
73	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
74	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
75	1 2 3	0-3 3-25 2-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
76	2	0-20 20-30	GrSiLo gravel GrSiLo	10YR4/2 10YR5/4	A B	NCM NCM
77	1 2 3	0-4 4-28 28-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
78	1 2 3	0-2 2-29 29-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
79	1 2 3	0-3 3-23 23-38	rootmat,leaves,humus GrSiLo gravel GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

80	1 2	0-3 3-parking lot	rootmat,leaves,humus		A/O	NCM
81	1 2 3	0-3 3-23 23-33	rootmat,leaves,humus GrSiLo gravel GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
82	1 2 3	0-3 3-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
83	1 2 3	0-3 3-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
84	1 2 3	0-3 3-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
85	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
86	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
87	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
88	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/4 10YR5/6	A/O A B	NCM NCM NCM
89	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
90	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
91	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
92	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

93	1 2 3	0-6 6-29 29-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
94	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
95	1 2 3	0-46 4-10 10-wood/branc	rootmat,leaves,humus GrSiLo hes	10YR4/2	A/O A	NCM NCM
96	1 2 3	0-6 6-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
97	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
98	1 2 3	0-2 2-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
99	1 2 3	0-2 2-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
100	1 2 3	0-2 2-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
101	1 2 3	0-4 4-23 23-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
102	1 2 3	0-5 5-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
103	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
104	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
105	1 2 3	0-2 2-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

106	1 2 3	0-3 3-22 25-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
107	1 2 3	0-3 3-18 18-gravel	rootmat,leaves,humus GrSiLo	10YR3/2	A/O A	NCM NCM
108	1 2 3	0-3 3-18 18-gravel	rootmat,leaves,humus GrSiLo	10YR3/2	A/O A	NCM NCM
109	1 2 3	0-3 3-21 21-31	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
110	1 2 3	0-3 3-10 10-stone	rootmat,leaves,humus GrSiLo	10YR3/2	A/O A	NCM NCM
111	1 2 3	0-4 4-23 23-33	rootmat,leaves,humus GrSiLo mottle GrSiLo	10YR4/2/5/4 10YR5/4	A/O A B	NCM NCM NCM
112	1 2 3	0-4 4-23 23-33	rootmat,leaves,humus GrSiLo mottle GrSiLo	10YR4/2/5/4 10YR5/4	A/O A B	NCM NCM NCM
113	1 2 3	0-4 4-25 25-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
114	1 2 3	0-5 5-27 27-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
115	1 2 3	0-5 5-28 28-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
116	1 2 3	0-6 6-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
117	1 2 3	0-3 3-28 28-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
118	1 2 3	0-5 5-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM

119	1 2 3	0-3 3-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
120	1 2 3	0-3 3-24 24-340	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
121	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
122	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
123	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
124	1 2 3	0-2 2-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM plastic NCM
125	1 2 3	0-4 4-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
126	1 2 3	0-5 5-26 26-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
127	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
128	1 2 3	0-5 5-28 28-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM beer glass NCM
129	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
130	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM wingls NCM
131	1 2 3	0-2 2-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM

132	1 2 3	0-2 2-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
133	1 2 3	0-5 5-27 27-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
134	1 2 3	0-5 5-25 25-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
135	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
136	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
137	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
138	1 2 3	0-5 5-30 30-35,root	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
139	1 2 3	0-2 2-30 30-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
140	1 2 3	0-5 5-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
141	1 2 3	0-3 3-23 23-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
142	2 3	0-28 28	GrSiLo mottle	10YR4/2-5/4	A/grd	NCM
143	1 2 3	0-3 3-20 20-asphalt	rootmat,leaves,humus GrSiLo mottle	10YR4/2-5/4	A/O A	NCM NCM
144	1 2 3	0-2 2-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
145	1 2 3	0-2 2-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM

146	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
147	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
148	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
149	1 2 3	0-2 2-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/3 10YR5/6	A/O A B	NCM NCM NCM
150	1 2 3	0-4 4-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
151	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
152	1 2 3	0-4 4-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
153	1 2 3	0-2 2-28 28-40	rootmat,leavls,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
154	1 2 3	0-2 2-27 27-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
155	1 2 3	0-3 3-25 25-hard pack	rootmat,leaves,humus GrSiLo mottle	10YR4/3-5/6	A/O A/grd	NCM wire nail
156	1 2 3	0-2 2-24 24-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
157	1 2	0-2 2-27	rootmat,leaves,humus GrSiLo	10YR4/2-5/4	A/O A	NCM NCM
158	1 2 3	0-3 3-26 26-gravel,hard	rootmat,leaves,humus GrSiLo pack	10YR4/2	A/O A	NCM NCM

159	1 2 3	0-2 2-22 22-gravel,hardp	rootmat,leaves,humus GrSiLo mottle back	10YR4/2-5/4	A/O A/grd	NCM NCM
160	1 2 3	0-4 4-26 26-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
161	1 2 3	0-2 2-10 10-impeded-bra	rootmat,leaves,humus GrSiLo mottle anches	10YR4/3-5/6	A/O A/grd	NCM wire nail
162	1 2 3	0-3 3-29 29-39	rootmat,leaves,humus GrSiLo GrSiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
163	1 2 3	0-3 3-29 29-39	rootmat,leaves,humus SiLo SiLo	10YR3/2 10YR5/4	A/O A B	NCM NCM NCM
164	1 2	0-3 3-30	rootmat,leaves,humus SiLo mottle	10YR3/2-5/6	A/O A	NCM NCM
165	1 2	0-3 3-30	rootmat,leaves,humus SiLo mottle	10YR3/2-5/6	A/O A	NCM NCM
166	1 2 3	0-4 4-27 27-37	rootmat,leaves,humus SiLo mottle SiLo	10YR4/2-5/6 10YR5/4	A/O A B	NCM NCM NCM
167	1 2 3	0-3 3-30 30-40	rootmat,leaves,humus SiLo mottle SiLo	10YR3/2-5/4 10YR5/4	A/O A B	NCM NCM NCM
168	1 2 3	0-1 1-5 5-impeded-brar	rootmat,leaves,humus GrSiLo mottle nches	10YR4/3-5/6	A/O A/grd	NCM wire nail
169	1 2 3	0-3 3-20 20-30	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
170	1 2 3	0-3 3-22 22-32	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
171	1 2 3	0-2 2-2 22-27	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
172	1 2 3	0-2 2-25 25-36	rootmat,leaves,humus GrSiLo mottle GrSiLo	10YR4/2-5/4 10YR5/4	A/O A B	NCM NCM NCM

173	1 2 3	0-2 2-25 25-36	rootmat,leaves,humus GrSiLo mottle GrSiLo	10YR4/2-5/4 10YR5/4	A/O A B	NCM NCM NCM
174	1 2 3	0-5 5-23 23-33	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
175	1 2 3	0-5 5-25 25-28,root	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
176	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
177	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
178	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
179	1 2 3	0-5 5-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
180	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
181	1 2	0-3 3-pavement	rootmat,leaves,humus		A/O	NCM
182	1 2 3	0-3 3-27 27-38	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
183	1 2 3	0-3 3-27 27-40	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
184	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
185	1 2 3	0-3 3-26 26-36	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
186	1 2 3	0-3 3-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM

187	1 2 3	0-3 3-24 24-34	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
188	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR4/2	A/O A A	NCM NCM NCM
189	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR4/2	A/O A A	NCM NCM NCM
190	1 2 3	0-5 5-25 25-35	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR5/4	A/O A B	NCM NCM NCM
191	1 2 3	0-6 6-27 27-37	rootmat,leaves,humus GrSiLo GrSiLo	10YR4/2 10YR4/2	A/O A A	NCM NCM NCM