Phase I Archaeological Investigation at Oak Tree Lane Town of Haverstraw, Rockland County, New York

February 2020

Prepared for:
Oak Tree Apartments, LLC, New City, New York

Alfred G. Cammisa, M.A. with Alexander Padilla (CAD)

1004

MANAGEMENT SUMMARY

PR\#:
Not known
Involved agencies:
Town of Haverstraw
Phase:
Phase IA \& IB
Location:
Town of Haverstraw
Rockland County
Survey Area:
Length: up to about 850 feet (259 meters) north-south
Width: up to about 700 feet (213) east-west
Acres Surveyed: about 13.5 acres (5.4 hectares)
USGS:
Thiells, NY
Survey overview:
ST no. \& interval: 191 ST's at 50 ft (15m) intervals.
Size of freshly plowed area: na
Surface survey transect interval: Na
Results:
No prehistoric or historic sites, disturbed soils

Structures:

No. Of buildings/structures/cemeteries in project area: numerous cottages \& multi-apt. buildings
No. Of buildings/structures/cemeteries adjacent to project area: store and numerous residencies
No. Of previously determined NR listed or eligible buildings/structures/cemeteries/districts: none
No. Of identified eligible buildings/structures/cemeteries/districts: none
Authors:
Alfred G. Cammisa, M.A.
with Alexander Padilla, B.A. (CAD)
Date of Report:
Report completed February, 2020

TABLE OF CONTENTS
Introduction 1
Environment. 1-2
Prehistoric Potential 2-3
Historic Potential 3-4
Field Methods 4-5
Field Results 5
Conclusions and Recommendations 5
Bibliography 5-6Appendix 1: Figures and PhotographsAppendix 2: Shovel Tests

LIST OF FIGURES

Figure 1 Thiells, NY USGS..
Figure 2 Location of the ST's on the project area
Figure $3 \quad 1839$ Burr map
Figure $4 \quad 1854$ map of Rockland County
Figure $5 \quad 1859$ Beers atlas of Rockland County
Figure $6 \quad 1867$ Beers atlas
Figure 71910 USGS
Figure 8 County Soil Survey

LIST OF PHOTOGRAPHS

Photo 1 Entrance way to Oak Tree Lane housing complex
Photo 2 Toward macadam parking area
Photo 3 Toward wooded fringe
Photo 4 Toward concrete \& stone foundation
Photo $5 \quad$ From filled-in in-ground pool toward storage tanks

INTRODUCTION

Between January 29 and February 19, 2020, TRACKER Archaeology, Inc. conducted a Phase IA documentary study and a Phase IB survey at Oak Tree Lane, Haverstraw Town, Rockland County, New York.

The purpose of the Phase IA documentary study was to determine the prehistoric and historic potential of the project area for the recovery of archaeological remains. The Phase IA was implemented by a review of the original and current environmental data, archaeological site files, other archival literature, maps, and documents.

The prehistoric and historic site file search was conducted at the New York Historic Preservation Office in Waterford, New York. Various historic web sites were queried via the internet to review any pertinent site information.

The purpose of the Phase IB survey was to recover physical evidence for the presence or absence of archaeological remains on the property before their potential destruction. This was accomplished through subsurface testing and ground surface reconnaissance.

The project area (APE) consists of the approximate 13.5 acre parcel which is planned for improvements/ redevelopment. The property is on either sides of the three Oak Tree Lanes. It is bound to the south by a paved driveway leading to a Shop Rite store, to the east by Shop-Rite and private residencies, to the north by the Village (boundary) line, and to the west by private residencies.

The study was completed by TRACKER Archaeology, Inc. of Monroe, New York. Prehistoric and historic research was conducted by Alfred G. Cammisa, M.A., principal investigator and Kim Croshier, B.A.. Field work was conducted by Alfred G. Cammisa and crew chief Alfred T. Cammisa. Report preparation by Alfred G. Cammisa with Alexander Padilla, B.A. (CAD).

The work was performed for Oak Tree Apartments, LLC, New City, New York.

ENVIRONMENT

Geology

The project area is located in the southeast portion of New York State in the east part of Rockland County. This portion of New York lies within the New Jersey Lowland Physiographic Province. The surrounding Piedmont Physiographic Province is described as an upland of moderate elevations with several lowlands areas known as the New Jersey Lowlands (Schuberth 1968: cover map, 13-14; Isachsen et al 2000: 143).

Soil and Topography
Soils on the property consist:

Name	Soil Horizon Depth in(cm)	Color	Texture Inclusion	Slope $\%$	Drain- age	Land- form
Urban land	na	na	na	na	na	At least 50% covered by structures

Name	Soil Horizon Depth in(cm)	Color	Texture Inclusion	Slope $\%$	Drain- age	Land- form
Wethersfield	Ap 0-13in $(0-33 \mathrm{~cm})$ B 13-22 (56)	$10 Y R 3 / 3$ $5 Y R 4 / 4$	GrSiLo	$3-8, \mathrm{~m}$ 8-15, $15-25$	well	glacial till

(Bonnell 1990: map \#9, pgs. 42, 44-46, 89).
KEY:

Shade: Lt=Light, Dk=Dark, V=Very
Color: $\mathrm{Br}=$ Brown, Blk=Black, Gry=Gray, Gbr=Gray Brown, StBr=Strong Brown, Rbr=Red Brown, Ybr= Yellow Brown
Soils: $\mathrm{Si}=$ Silt, $\mathrm{SiLo}=$ Loam, $\mathrm{Sa}=$ Sand, $\mathrm{Cl}=$ Clay
Other: $\mathrm{Sh}=$ shale, $\mathrm{M}=$ Mottle, $\mathrm{Gr}=$ Gravelly, $\mathrm{Cb}=$ cobbles, $\mathrm{Ch}=$ channery, Fi=Fine,/=or

Elevations are approximately 354 to 384 feet above mean sea level.

Hydrology

The project area about 1100 feet south of Minisceongo Creek which drains east into the Hudson River.

Vegetation

The predominant forest community in this area was probably the Oak Hickory. This forest is a nut producing forest with acorns and hickory nuts usually an obvious part of the leaf litter on the forest floor. The Oak Hickory Forest intermingles with virtually all other forest types. The northern extension of this forest community was also originally called the Oak-Chestnut forest, before the historic Chestnut blight (Kricher 1988:38, 57-60).

At the time of the Phase IB field survey, the study area consisted of a residential complex consisting of individual cottages as well as multi-apartment buildings.

PREHISTORIC POTENTIAL

A prehistoric site file search was conducted at the New York State Historic Preservation Office. The search included an approximate mile radius around the study area. The following sites were recorded:
-No sites reported.

Assessing the known environmental and prehistoric data, we can summarize the following:
-The project area about 1100 feet south of Minisceongo Creek
-The property consists of level two steeply sloping topography with well drained soils. A smaller portion is urban land (cut \& fill).
-No prehistoric sites were located in the vicinity of the study area.

In our opinion, the study area has a moderate potential for the recovery of prehistoric remains on any intact ground. The type of site encountered could possibly be a procurement and, or, processing camp from either the Archaic or Woodland Periods.

HISTORIC POTENTIAL

Contact Period (Seventeenth Century)

A the time of European contact and settlement, the study area and surrounding territory were probably occupied by the Tappans who were likely a subtribe of the Munsi speaking Lenni Lenape (Delaware) (Bolton 1975:map \& chart; Ferdon 1986: 22; Bedell 1968: 27-30; Synder 1969:2).

Indian trails entered Rockland County from New Jersey. The Assanpink Trail connected Trenton, New Jersey with Suffern in Rockland County (Synder 1969:2).

Eighteenth Century

During this century most of the inhabitants were engaged in growing maize, potatoes, cereals, fruit orchards and flax. Wool was sheared and spun and hay was gathered (Bedell 1968: 54).
"The first road in Haverstraw was the continuation of the King's Highway, which connected the early settlers with their neighbors in Tappan-town. This was soon followed, as the influx of settlers from Long Island to Kakiat began, by a road from the river to the new Hempstead, a road which was later continued on to Sidman's Pass and down to Tappan and became the military road of the Revolution. Scarcely had these lines of communication been cut through, however, when the opening of Hassenclever mine and the erection of iron works along Florus Falls Creek, led to the construction of a road from the King's highway along the creek and Stony brook to the mine" (Green 1886).

Nineteenth Century

In 1830, Elisha Peck, head of "Peck \& Phelps" returned from England and brought a rolling mill which was set up along the Minisceongo Creek on land purchased by Anson Phelps. A village sprang up around the rolling mill, wire, and other factories Peck and Phelps established, which was founded almost entirely by the firms employees and their families. The name for this employee village was Sansondale, in honor of the ship, the Samson, on which Peck returned from England (Green 1886:387).
"By 1837, almost all the land between the present Main Street and the neck of land known as the "Narrow Passage," was owned by George S. and Michael Allison. In that year, following the mania for real estate speculation then prevailing, these men had this tract surveyed and cut into building lots, and streets were run through and given the names, many of them still retain. The new village was called Warren" (Green 1886).

The 1839 Burr map shows the project area in the town of Haverstraw, near what appears to the the Minisceongo Creek. A road, which may be Ramapo Road, is depicted. No settlement is depicted near the project area (Figure 3).

In 1842 Phelps left the business, leaving Peck the sole owner. By now the company owned a chemical factory and screw works here. The factories were soon after leased by other companies (Green 1886: 388).

The 1854 Map of Rockland County depicts no structures on or adjacent to the project area which is just north of Rosman Road where it bends south (Figure 4).

The 1859 atlas of Rockland County depicts the same as the previous map with no structures are on or adjacent to the project area (Figure 5).

The 1867 Beers atlas shows no buildings on or adjacent to the property. Oak Tree Lane is still not depicted (Figure 6).

Twentieth Century

The 1910 USGS Beers atlas shows no structures on or adjacent to the project area (Figure 7).

An historic site file search was conducted at the New York State Historic Preservation Office. The search included an approximate mile radius around the study area. The following sites were recorded:

NYSM Site	NYSHPO Site	Distance from APE $\mathbf{f t (m)}$	Site Type
	8744.000009	$4750(1448)$	Millennium Pipeline Historic Foundation, remains:no info.
	8744.000010	$4204(1282)$	Millennium Pipeline Historic Well: no info.

Assessing the known environmental and historic data, we can summarize the following:
-The project area about 1100 feet south of Minisceongo Creek
-The property consists of level two steeply sloping topography with well drained soils. A small portion is urban land.
-Historic sites are in the surrounding area.
-No historic map documented structures were noted on or adjacent to the project property.

In our opinion, the study area has a moderate potential for the recovery of historic sites on any intact ground.

FIELD METHODS

Walkover

Exposed ground surfaces were subjected to a close quarters walk- over at approximately 3 to 5 meter transects. Covered ground terrain was reconnoitered at about 15 meter intervals for any above ground features, such as berms, depressions, rock configurations, etc. that could be evidence for a prehistoric or historic site. Photographs were taken of the project area.

Shovel Testing

Shovel tests were excavated at about 15 meter intervals across level terrain in the project area. Shovel tests were paced apart. Each shovel test measured about 30 to 40 cm . in diameter and was dug into the underlying subsoil (B horizon) 10 to 20 cm . when possible. All soils were screened through $1 / 4$ inch wire mesh and observed for artifacts. Shovel test pits were flagged in the field. All shovel tests were mapped on the project area map at this time with the assistance of a compass.

Soil stratigraphy was recorded according to texture and color. Soil color was matched against the Munsell color chart for soils. Notes were transcribed in a notebook.

FIELD RESULTS

Field testing of the project area included the excavation of 191 ST's across the the project area. No prehistoric artifacts or features were encountered. No historic artifacts or features were encountered. The apartment complex of cottages and multi-apartment buildings appeared to be a slum with broken windows, broken doors, old furniture dumped outside, condoms scattered around the grounds, a filled in in-ground pool, metal storage tanks near the pool, and dumping of tree branches in the wooded fringe areas. Deer were in the wooded areas.

Stratigraphy
Stratigraphy across the property appeared intact and included the following:
A/O horizon: 1 to 6 cm . thick of root mat, leaf litter, and/or humus.
A horizon: 23 to 32 cm . thick of 10YR4/2 dark grey, 10YR4/3 brown, 10YR3/2 very dark grey brown or 10YR3/3 dark brown, gravelly silty loam or silty loam. This layer was often mottled with subsoil and often truncated partially or entirely.

B horizon: 10 to 20 cm . dug into where possible of 10YR5/4 or 10YR5/6 yellow brown gravelly silty loam or silty loam. This layer was sometimes impeded by fill.

CONCLUSIONS AND RECOMMENDATIONS

The Phase IA had determined that based upon topographic characteristics and proximity to prehistoric sites and Indian trails, the property was assessed as having a moderate potential for encountering prehistoric sites.

Based upon topographic characteristics and proximity to historic sites, Indian trails, and map documented structures, the property was assessed as having a moderate potential for encountering historic sites.

During the course of the Phase IB archaeological field survey, 191 ST's were excavated. No prehistoric artifacts or features were encountered. No historic artifacts were recovered. The soils were impacted to some degree. No further work is recommended.

BIBLIOGRAPHY

Burr, David H.
1839 Map of the Counties of Orange and Rockland. Stone \& Clark Ithaca, NY
Bonner, Stephen M.
1990 Soil Survey of Rockland County, New York. United States Department of Agriculture in cooperation with Cornell University Agricultural Experimental Station.

Cole, David, Rev., editor
1884 History of Rockland County, New York. J.B. Beers \& Co., New York.
Green, Frank Bertangue, M.D.
1886 The History of Rockland County. A.S. Barnes \& Co., New York.
Isachsen, Y.W., E. Landing, J.M. Lauber, L.V. Rickard, W.B. Rogers
2000 Geology of New York: A Simplified Account. New York State Museum.
Kricher, John C.
1988 The Peterson Field Guide Series: Eastern Forests of North America. Houghton Mifflin Company, Boston.

Synder, John P.
1969 The Story of New Jersey's Civil Boundaries: 1606-1968. Bureau of Geology-Topography, New Jersey.

Maps
Map of Rockland County, New York. R.F. O'Conner, New York.
1859 Map of Rockland County, New York. R.F. O'Conner, New York.
1967 Illustrated Atlas of Rockland County of F.W. Beers, Walker \& Jewett, NY, NY.
1991 Illustrated Atlas of Hudson River Valley from New Yoirk City to Troy. Watson \& Co. NY, NY.
1955 United States Geological Survey, Haverstraw, New York quadrangle map, 7.5 minute series.
1910 United States Geological Survey, Haverstraw, New York quadrangle map, 15 minute series
Sauthier, Claude Joseph
1779 A Chronological Map of the Province of New York in North America, Divided into Counties, Manors, Patents, Townships, and Grants of Land. William Faden, London.

APPENDIX 1

Figure 1
Thiells, NY USGS

Cuskivin

1. Barms
 Ne ectletrice. Fif erson

s.ny gedrs

TD D. $31 u \mathrm{~m}$ >r sp Gourdye
 PFBazer:

hi. Clanizue

9. Curnele

7193
C.Gurnee. 102 J. h . elter.

1. Sprinastect 100 avs coe
5.Gurkee :

- Q:Slemeres's ficos TOO AMllisoriso 707

ARCi

Figure 6

1867 Beers atlas

$0 . \frac{1020}{2}$

NEW YORK - NEW JERSEY RAMAPO QUADRANGLE

Figure 8
 County Soil Survey

Photo 2
Toward Macadam parking area

APPENDIX 2

SHOVEL TESTS

$\begin{aligned} & \text { STP } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { LV } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { DEPTH(CM) } \\ & 0-3 \end{aligned}$	TEXTURE gravel (parking lot)	COLOR	HOR	COMMENT
2	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-20	GrSiLo road gravel	10YR4/2	A	NCM
	3	20-30	GrSiLo	10YR5/4	B	NCM
3	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/6	B	NCM
4	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/6	B	NCM
5	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/6	B	NCM
6	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/6	B	NCM
7	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/6	B	NCM
8	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/6	B	NCM
9	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	7.5YR4/3	A	wood
	3	27-37	GrSiLo	7.5YR4/6	B	NCM
10	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo	10YR4/2	A	plastic, wingl
	3	26-36	GrSiLo	10YR5/6	B	NCM
11	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/6	B	NCM
12	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
13	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM

14	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-21	GrSiLo	10YR4/2	A	NCM
	3	21-31	GrSiLo	10YR5/4	B	NCM
15	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-21	GrSiLo	10YR4/3	A	NCM
	3	21-31	GrSiLo	10YR5/4	B	NCM
16	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-21	GrSiLo	10YR4/3	A	NCM
	3	21-31	GrSiLo	10YR5/4	B	NCM
17	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-21	GrSiLo	10YR4/2	A	NCM
	3	21-31	GrSiLo	10YR5/6	B	NCM
18	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/6	B	NCM
19	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/6	B	NCM
20	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-22	GrSiLo	10YR4/2	A	NCM
	3	22-33	GrSiLo	10YR5/6	B	NCM
21	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-40	GrSiLo	10YR5/6	B	NCM
22	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-40	GrSiLo	10YR5/6	B	NCM
23	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-24	GrSiLo	10YR3/2	A	NCM
	3	24-40	GrSiLo	10YR5/6	B	NCM
24	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-22	GrSiLo	10YR3/2	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM
25	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
26	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/3	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM

26	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
27	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-22	GrSiLo	10YR3/2	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM
28	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	$10 Y R 564$	B	NCM
29	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR3/2	A	NCM
	3	25-37	GrSiLo	10YR5/6	B	NCM
30	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR3/2	A	NCM
	3	25-35	GrSiLo	10YR5/6	B	NCM
31	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-23	GrSiLo	10YR3/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
32	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-29	GrSiLo	10YR3/2	A	NCM
	3	29-43	GrSiLo	10YR5/4	B	NCM
33	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-28	GrSiLo	10YR3/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
34	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-28	GrSiLo	10YR3/2	A	beer can
	3	28-38	GrSiLo	10YR5/4	B	NCM
35	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR564	B	NCM
36	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-23	GrSiLo mottle	10YR4/2-5/4	A	asphalt frags
	3	23-33	GrSiLo	10YR5/4	B	NCM
37	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-25	GrSiLo	10YR4/2	A	bathroom tile
	3	25-35	GrSiLo	$10 Y R 564$	B	NCM
38	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM

39	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	brick frag
	3	24-34	GrSiLo	10YR5/4	B	NCM
40	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
41	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
42	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo drainage gravel	10YR3/2	A	NCM
	3	25-38	GrSiLo	10YR5/4	B	NCM
43	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
44	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
45	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
46	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-24	GrSiLo gravel	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
47	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
48	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-26	GrSiLo	10YR4/3	A	NCM
	3	26-37	GrSiLo	10YR5/4	B	NCM
49	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
50	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
51	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM

52	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-39	GrSiLo	10YR5/4	B	NCM
53	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-25	GrSiLo	10YR4/2	A	NCM
	3	25-39	GrSiLo	10YR5/4	B	NCM
54	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-40	GrSiLo	10YR5/4	B	NCM
55	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-39	GrSiLo	10YR5/4	B	NCM
56	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-35	Lo	10YR3/3	A/fill?	NCM
57	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
58	1	0-1	rootmat,leaves, humus		A/O	NCM
	2	1-20	GrSiLo	10YR4/2	A	NCM
	3	20-gra	alt frags			
59	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
60	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-30	GrSiLo mottle	10YR3/3-5/6	A/grd/	NCM
61	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/2	A	NCM
	3	20-30	GrSiLo	10YR5/4	B	NCM
62	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/2	A	NCM
	3	20-30	GrSiLo	10YR5/4	B	NCM
63	1	0-1	rootmat,leaves, humus		A/O	NCM
	2	1-20	GrSiLo gravel	10YR4/2	A	NCM
	3	20-30	GrSiLo	10YR5/4	B	NCM
64	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
65	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM

66	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-25	GrSiLo	10YR4/4	A	asphalt frags
	3	25-35	GrSiLo	10YR5/6	B	NCM
67	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-25	GrSiLo	10YR4/4	A	NCM
	3	25-35	GrSiLo	10YR5/6	B	NCM
68	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-25	GrSiLo	10YR4/4	A	NCM
	3	25-35	GrSiLo	10YR5/6	B	NCM
69	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
70	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
71	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
72	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
73	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
74	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
75	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	2-35	GrSiLo	10YR5/4	B	NCM
76	2	0-20	GrSiLo gravel	10YR4/2	A	NCM
	3	20-30	GrSiLo	10YR5/4	B	NCM
77	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-28	GrSiLo	10YR4/2	A	NCM
	3	28-39	GrSiLo	10YR5/4	B	NCM
78	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-29	GrSiLo	10YR4/2	A	NCM
	3	29-39	GrSiLo	10YR5/4	B	NCM
79	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-23	GrSiLo gravel	10YR4/2	A	NCM
	3	23-38	GrSiLo	10YR5/4	B	NCM

93	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-29	GrSiLo	10YR4/2	A	NCM
	3	29-39	GrSiLo	10YR5/4	B	NCM
94	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
95	1	0-46	rootmat,leaves, humus		A/O	NCM
	2	4-10	GrSiLo	10YR4/2	A	NCM
	3	10-woo	hes			
96	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
97	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
98	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
99	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
100	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
101	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-23	GrSiLo	10YR4/2	A	NCM
	3	23-35	GrSiLo	10YR5/4	B	NCM
102	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
103	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
104	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
105	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-22	GrSiLo	10YR4/2	A	NCM
	3	22-32	GrSiLo	10YR5/4	B	NCM

106	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-22	GrSiLo	10YR4/2	A	NCM
	3	25-32	GrSiLo	10YR5/4	B	NCM
107	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-18	GrSiLo	10YR3/2	A	NCM
	3	18-gravel				
108	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-18	GrSiLo	10YR3/2	A	NCM
	3	18-gravel				
109	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-21	GrSiLo	10YR4/2	A	NCM
	3	21-31	GrSiLo	10YR5/4	B	NCM
110	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-10	GrSiLo	10YR3/2	A	NCM
	3	10-stone				
111	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-23	GrSiLo mottle	10YR4/2/5/4	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
112	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-23	GrSiLo mottle	10YR4/2/5/4	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
113	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-25	GrSiLo	10YR3/2	A	NCM
	3	25-37	GrSiLo	10YR5/4	B	NCM
114	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR3/2	A	NCM
	3	27-40	GrSiLo	10YR5/4	B	NCM
115	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-28	GrSiLo	10YR3/2	A	NCM
	3	28-40	GrSiLo	10YR5/4	B	NCM
116	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-28	GrSiLo	10YR3/2	A	NCM
	3	28-38	GrSiLo	10YR5/4	B	NCM
117	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-28	GrSiLo	10YR4/2	A	NCM
	3	28-40	GrSiLo	10YR5/4	B	NCM
118	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR3/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM

119	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
120	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-340	GrSiLo	10YR5/4	B	NCM
121	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
122	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
123	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
124	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-23	GrSiLo	10YR4/2	A	plastic
	3	23-33	GrSiLo	10YR5/4	B	NCM
125	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
126	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo	10YR4/2	A	NCM
	3	26-40	GrSiLo	10YR5/4	B	NCM
127	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
128	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-28	GrSiLo	10YR4/2	A	beer glass
	3	28-38	GrSiLo	10YR5/4	B	NCM
129	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
130	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	wingls
	3	24-34	GrSiLo	10YR5/4	B	NCM
131	1	0-2	rootmat,leaves,humus		A/O	NCM
	2	2-22	GrSiLo	10YR4/3	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM

132	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-22	GrSiLo	10YR4/3	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM
133	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-39	GrSiLo	10YR5/4	B	NCM
134	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR4/2	A	NCM
	3	25-38	GrSiLo	10YR5/4	B	NCM
135	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
136	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
137	1	0-6	rootmat,leaves, humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
138	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-30	GrSiLo	10YR4/2	A	NCM
	3	30-35,root	GrSiLo	10YR5/4	B	NCM
139	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-30	GrSiLo	10YR4/2	A	NCM
	3	30-40	GrSiLo	10YR5/4	B	NCM
140	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
141	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-23	GrSiLo	10YR4/2	A	NCM
	3	23-35	GrSiLo	10YR5/4	B	NCM
142	2	0-28	GrSiLo mottle	10YR4/2-5/4	A/grd	NCM
	3	28				
143	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-20	GrSiLo mottle	10YR4/2-5/4	A	NCM
	3	20-asphalt				
144	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-22	GrSiLo	10YR4/3	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM
145	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-22	GrSiLo	10YR4/3	A	NCM
	3	22-32	GrSiLo	10YR5/6	B	NCM

146	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/3	A	NCM
	3	20-30	GrSiLo	10YR5/6	B	NCM
147	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/3	A	NCM
	3	20-30	GrSiLo	10YR5/6	B	NCM
148	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/3	A	NCM
	3	20-30	GrSiLo	10YR5/6	B	NCM
149	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-20	GrSiLo	10YR4/3	A	NCM
	3	20-30	GrSiLo	10YR5/6	B	NCM
150	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
151	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
152	1	0-4	rootmat,leaves, humus		A/O	NCM
	2	4-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
153	1	0-2	rootmat,leavls,humus		A/O	NCM
	2	2-28	GrSiLo	10YR4/2	A	NCM
	3	28-40	GrSiLo	10YR5/4	B	NCM
154	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-27	GrSiLo	10YR4/2	A	NCM
	3	27-40	GrSiLo	10YR5/4	B	NCM
155	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo mottle	10YR4/3-5/6	A/grd	wire nail
	3	25-ha				
156	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-24	GrSiLo	10YR4/2	A	NCM
	3	24-35	GrSiLo	10YR5/4	B	NCM
157	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-27	GrSiLo	10YR4/2-5/4	A	NCM
158	1	0-3	rootmat, leaves, humus		A/O	NCM
	2	3-26	GrSiLo	10YR4/2	A	NCM
	3	26-gr	ack			

173	1	0-2	rootmat,leaves, humus		A/O	NCM
	2	2-25	GrSiLo mottle	10YR4/2-5/4	A	NCM
	3	25-36	GrSiLo	10YR5/4	B	NCM
174	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-23	GrSiLo	10YR4/2	A	NCM
	3	23-33	GrSiLo	10YR5/4	B	NCM
175	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-25	GrSiLo	10YR4/2	A	NCM
	3	25-28,root	GrSiLo	10YR5/4	B	NCM
176	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
177	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
178	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
179	1	0-5	rootmat,leaves, humus		A/O	NCM
	2	5-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR5/4	B	NCM
180	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
181	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3 -pavement				
182	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-27	GrSiLo	10YR4/2	A	NCM
	3	27-38	GrSiLo	10YR5/4	B	NCM
183	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-27	GrSiLo	10YR4/2	A	NCM
	3	27-40	GrSiLo	10YR5/4	B	NCM
184	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
185	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-26	GrSiLo	10YR4/2	A	NCM
	3	26-36	GrSiLo	10YR5/4	B	NCM
186	1	0-3	rootmat,leaves, humus		A/O	NCM
	2	3-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM

187	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-24	GrSiLo	10YR4/2	A	NCM
	3	24-34	GrSiLo	10YR5/4	B	NCM
188	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR4/2	A	NCM
189	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR4/2	A	NCM
190	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-25	GrSiLo	10YR4/2	A	NCM
	3	25-35	GrSiLo	10YR5/4	B	NCM
191	1	0-6	rootmat,leaves,humus		A/O	NCM
	2	6-27	GrSiLo	10YR4/2	A	NCM
	3	27-37	GrSiLo	10YR4/2	A	NCM

